3.4.25 \(\int \frac {1}{x^{5/2} (b x^2+c x^4)} \, dx\) [325]

3.4.25.1 Optimal result
3.4.25.2 Mathematica [A] (verified)
3.4.25.3 Rubi [A] (verified)
3.4.25.4 Maple [A] (verified)
3.4.25.5 Fricas [C] (verification not implemented)
3.4.25.6 Sympy [A] (verification not implemented)
3.4.25.7 Maxima [A] (verification not implemented)
3.4.25.8 Giac [A] (verification not implemented)
3.4.25.9 Mupad [B] (verification not implemented)

3.4.25.1 Optimal result

Integrand size = 19, antiderivative size = 217 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=-\frac {2}{7 b x^{7/2}}+\frac {2 c}{3 b^2 x^{3/2}}-\frac {c^{7/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} b^{11/4}}+\frac {c^{7/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} b^{11/4}}-\frac {c^{7/4} \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} b^{11/4}}+\frac {c^{7/4} \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} b^{11/4}} \]

output
-2/7/b/x^(7/2)+2/3*c/b^2/x^(3/2)-1/2*c^(7/4)*arctan(1-c^(1/4)*2^(1/2)*x^(1 
/2)/b^(1/4))/b^(11/4)*2^(1/2)+1/2*c^(7/4)*arctan(1+c^(1/4)*2^(1/2)*x^(1/2) 
/b^(1/4))/b^(11/4)*2^(1/2)-1/4*c^(7/4)*ln(b^(1/2)+x*c^(1/2)-b^(1/4)*c^(1/4 
)*2^(1/2)*x^(1/2))/b^(11/4)*2^(1/2)+1/4*c^(7/4)*ln(b^(1/2)+x*c^(1/2)+b^(1/ 
4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(11/4)*2^(1/2)
 
3.4.25.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.59 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=\frac {\frac {4 b^{3/4} \left (-3 b+7 c x^2\right )}{x^{7/2}}-21 \sqrt {2} c^{7/4} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )+21 \sqrt {2} c^{7/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{42 b^{11/4}} \]

input
Integrate[1/(x^(5/2)*(b*x^2 + c*x^4)),x]
 
output
((4*b^(3/4)*(-3*b + 7*c*x^2))/x^(7/2) - 21*Sqrt[2]*c^(7/4)*ArcTan[(Sqrt[b] 
 - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])] + 21*Sqrt[2]*c^(7/4)*ArcT 
anh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/(42*b^(11/4) 
)
 
3.4.25.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.15, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.632, Rules used = {9, 264, 264, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {1}{x^{9/2} \left (b+c x^2\right )}dx\)

\(\Big \downarrow \) 264

\(\displaystyle -\frac {c \int \frac {1}{x^{5/2} \left (c x^2+b\right )}dx}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 264

\(\displaystyle -\frac {c \left (-\frac {c \int \frac {1}{\sqrt {x} \left (c x^2+b\right )}dx}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {c \left (-\frac {2 c \int \frac {1}{c x^2+b}d\sqrt {x}}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 755

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {c \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{b}-\frac {2}{3 b x^{3/2}}\right )}{b}-\frac {2}{7 b x^{7/2}}\)

input
Int[1/(x^(5/2)*(b*x^2 + c*x^4)),x]
 
output
-2/(7*b*x^(7/2)) - (c*(-2/(3*b*x^(3/2)) - (2*c*((-(ArcTan[1 - (Sqrt[2]*c^( 
1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^ 
(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[b]) + (-1/2*Log 
[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c 
^(1/4)) + Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(2*Sq 
rt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[b])))/b))/b
 

3.4.25.3.1 Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.25.4 Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.59

method result size
derivativedivides \(-\frac {2}{7 b \,x^{\frac {7}{2}}}+\frac {2 c}{3 b^{2} x^{\frac {3}{2}}}+\frac {c^{2} \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{3}}\) \(127\)
default \(-\frac {2}{7 b \,x^{\frac {7}{2}}}+\frac {2 c}{3 b^{2} x^{\frac {3}{2}}}+\frac {c^{2} \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{3}}\) \(127\)
risch \(-\frac {2 \left (-7 c \,x^{2}+3 b \right )}{21 b^{2} x^{\frac {7}{2}}}+\frac {c^{2} \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{3}}\) \(128\)

input
int(1/x^(5/2)/(c*x^4+b*x^2),x,method=_RETURNVERBOSE)
 
output
-2/7/b/x^(7/2)+2/3*c/b^2/x^(3/2)+1/4*c^2/b^3*(b/c)^(1/4)*2^(1/2)*(ln((x+(b 
/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x-(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c 
)^(1/2)))+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(b/c)^( 
1/4)*x^(1/2)-1))
 
3.4.25.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.88 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=\frac {21 \, b^{2} x^{4} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} \log \left (b^{3} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} + c^{2} \sqrt {x}\right ) + 21 i \, b^{2} x^{4} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} \log \left (i \, b^{3} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} + c^{2} \sqrt {x}\right ) - 21 i \, b^{2} x^{4} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} \log \left (-i \, b^{3} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} + c^{2} \sqrt {x}\right ) - 21 \, b^{2} x^{4} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} \log \left (-b^{3} \left (-\frac {c^{7}}{b^{11}}\right )^{\frac {1}{4}} + c^{2} \sqrt {x}\right ) + 4 \, {\left (7 \, c x^{2} - 3 \, b\right )} \sqrt {x}}{42 \, b^{2} x^{4}} \]

input
integrate(1/x^(5/2)/(c*x^4+b*x^2),x, algorithm="fricas")
 
output
1/42*(21*b^2*x^4*(-c^7/b^11)^(1/4)*log(b^3*(-c^7/b^11)^(1/4) + c^2*sqrt(x) 
) + 21*I*b^2*x^4*(-c^7/b^11)^(1/4)*log(I*b^3*(-c^7/b^11)^(1/4) + c^2*sqrt( 
x)) - 21*I*b^2*x^4*(-c^7/b^11)^(1/4)*log(-I*b^3*(-c^7/b^11)^(1/4) + c^2*sq 
rt(x)) - 21*b^2*x^4*(-c^7/b^11)^(1/4)*log(-b^3*(-c^7/b^11)^(1/4) + c^2*sqr 
t(x)) + 4*(7*c*x^2 - 3*b)*sqrt(x))/(b^2*x^4)
 
3.4.25.6 Sympy [A] (verification not implemented)

Time = 66.18 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.67 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=\begin {cases} \frac {\tilde {\infty }}{x^{\frac {11}{2}}} & \text {for}\: b = 0 \wedge c = 0 \\- \frac {2}{11 c x^{\frac {11}{2}}} & \text {for}\: b = 0 \\- \frac {2}{7 b x^{\frac {7}{2}}} & \text {for}\: c = 0 \\- \frac {2}{7 b x^{\frac {7}{2}}} + \frac {2 c}{3 b^{2} x^{\frac {3}{2}}} - \frac {c^{2} \sqrt [4]{- \frac {b}{c}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {b}{c}} \right )}}{2 b^{3}} + \frac {c^{2} \sqrt [4]{- \frac {b}{c}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {b}{c}} \right )}}{2 b^{3}} + \frac {c^{2} \sqrt [4]{- \frac {b}{c}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {b}{c}}} \right )}}{b^{3}} & \text {otherwise} \end {cases} \]

input
integrate(1/x**(5/2)/(c*x**4+b*x**2),x)
 
output
Piecewise((zoo/x**(11/2), Eq(b, 0) & Eq(c, 0)), (-2/(11*c*x**(11/2)), Eq(b 
, 0)), (-2/(7*b*x**(7/2)), Eq(c, 0)), (-2/(7*b*x**(7/2)) + 2*c/(3*b**2*x** 
(3/2)) - c**2*(-b/c)**(1/4)*log(sqrt(x) - (-b/c)**(1/4))/(2*b**3) + c**2*( 
-b/c)**(1/4)*log(sqrt(x) + (-b/c)**(1/4))/(2*b**3) + c**2*(-b/c)**(1/4)*at 
an(sqrt(x)/(-b/c)**(1/4))/b**3, True))
 
3.4.25.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.93 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=\frac {\frac {2 \, \sqrt {2} c^{2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {2 \, \sqrt {2} c^{2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {\sqrt {2} c^{\frac {7}{4}} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}}} - \frac {\sqrt {2} c^{\frac {7}{4}} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}}}}{4 \, b^{2}} + \frac {2 \, {\left (7 \, c x^{2} - 3 \, b\right )}}{21 \, b^{2} x^{\frac {7}{2}}} \]

input
integrate(1/x^(5/2)/(c*x^4+b*x^2),x, algorithm="maxima")
 
output
1/4*(2*sqrt(2)*c^2*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c) 
*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + 2*sqrt( 
2)*c^2*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/s 
qrt(sqrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + sqrt(2)*c^(7/4)*lo 
g(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/b^(3/4) - sqrt(2) 
*c^(7/4)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/b^(3/ 
4))/b^2 + 2/21*(7*c*x^2 - 3*b)/(b^2*x^(7/2))
 
3.4.25.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.88 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=\frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} c \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, b^{3}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} c \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, b^{3}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} c \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, b^{3}} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} c \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, b^{3}} + \frac {2 \, {\left (7 \, c x^{2} - 3 \, b\right )}}{21 \, b^{2} x^{\frac {7}{2}}} \]

input
integrate(1/x^(5/2)/(c*x^4+b*x^2),x, algorithm="giac")
 
output
1/2*sqrt(2)*(b*c^3)^(1/4)*c*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sq 
rt(x))/(b/c)^(1/4))/b^3 + 1/2*sqrt(2)*(b*c^3)^(1/4)*c*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/b^3 + 1/4*sqrt(2)*(b*c^3)^( 
1/4)*c*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/b^3 - 1/4*sqrt(2)* 
(b*c^3)^(1/4)*c*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/b^3 + 2/ 
21*(7*c*x^2 - 3*b)/(b^2*x^(7/2))
 
3.4.25.9 Mupad [B] (verification not implemented)

Time = 13.19 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.30 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )} \, dx=\frac {{\left (-c\right )}^{7/4}\,\mathrm {atan}\left (\frac {{\left (-c\right )}^{1/4}\,\sqrt {x}}{b^{1/4}}\right )}{b^{11/4}}-\frac {\frac {2}{7\,b}-\frac {2\,c\,x^2}{3\,b^2}}{x^{7/2}}+\frac {{\left (-c\right )}^{7/4}\,\mathrm {atanh}\left (\frac {{\left (-c\right )}^{1/4}\,\sqrt {x}}{b^{1/4}}\right )}{b^{11/4}} \]

input
int(1/(x^(5/2)*(b*x^2 + c*x^4)),x)
 
output
((-c)^(7/4)*atan(((-c)^(1/4)*x^(1/2))/b^(1/4)))/b^(11/4) - (2/(7*b) - (2*c 
*x^2)/(3*b^2))/x^(7/2) + ((-c)^(7/4)*atanh(((-c)^(1/4)*x^(1/2))/b^(1/4)))/ 
b^(11/4)